y*y+y(^2)=1

Simple and best practice solution for y*y+y(^2)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y*y+y(^2)=1 equation:



y*y+y(^2)=1
We move all terms to the left:
y*y+y(^2)-(1)=0
determiningTheFunctionDomain y^2+y*y-1=0
Wy multiply elements
y^2+y^2-1=0
We add all the numbers together, and all the variables
2y^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| 42=6f+12 | | 3x*1/3=9*1/3 | | 12(x+3)=120 | | 2n+5=-29 | | 21=3q+9 | | 14-x=x+6 | | 10=16-3j | | e^2×=54 | | 4(3/2x-1/2)=15 | | -2-8x=-26 | | 48=2m+12 | | 2x−(−4)=−14 | | -4x+17=23 | | 2b−6=15 | | 4=6h-14 | | I=−20x^2+400x | | -10-5q=-2q+8-5q | | 5y−2+12=6y+4 | | -w-1=-2w-10 | | 18(27)=x | | 4m−7=2m−8 | | 0.5x+6.5=11 | | 3/4a=2.5 | | -8f-8=-9f+10-5f | | 10=h-5 | | 3m2+5=10 | | 13=15-m | | -9q+3=7-5q-4 | | 40=5t+10 | | 4.2-8m=0,2 | | -3.99+9.9n=-7.59+8.6n-2.12 | | 19=j+5 |

Equations solver categories